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Information coding capacity of cerebellar parallel fibers
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Abstract

Understanding synaptic connectivity is a prerequisite to gaining insight on how the central nervous system processes information. Cerebellar
parallel fibers make an impressive number of synapses with the Purkinje cells. These synapses are the major structural elements of a large information
processing system. The objective of the present report is to describe a method to estimate the coding capacity of this information processing system.
We propose to derive the coding capacity from the linear distribution pattern of synaptic varicosities along parallel fibers in a manner consistent
with Shannon’s information theory formalism. The coding capacity of an average parallel fiber synapse is S = −κ�Pl(i) ln Pl(i), where κ = 1/ln 2,
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l(i) is the probability of observing a particular inter-varicosital distance l(i), and ln is the natural logarithm to the base e. In the cerebellar parallel
bers of the mouse, and in a number of other unmyelinated axonal systems, the distribution pattern of Pl(i) as a function of l(i) is exponential-like.
ccording to information theory, the exponential-like distribution pattern suggests that information transmission in these axonal synaptic systems

s operating at near-optimal coding capacity. This optimization in information coding may be the result of a stochastic-like process regulating
he formation or elimination of parallel fiber synapses during development and maturation. In the adult nervous system, neuroplasticity-mediated
ynaptic remodeling may also regulate the coding capacity of axonal synapses via a similar stochastic-like process. The conceptual framework
erein may be applicable to other axonal systems in the nervous system.

2006 Elsevier Inc. All rights reserved.
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. Introduction

A major function of the central nervous system is to process
nformation. Understanding synaptic connectivity is a prereq-
isite to gaining insight on how the central nervous system
rocesses information. In the present report, we have used the
erebellar parallel fibers as our model system. Within the cere-
ellar cortex, the input stage involves the granule cells. The main
ynaptic targets of granule cells are the Purkinje cells, which are
he sole output neurons of the cerebellar cortex. Each granule
ell issues a single ascending axon toward the molecular layer.
here, the axon bifurcates into a parallel fiber running at a right
ngle through the dendritic planes of several hundred Purkinje
ells. Distal to the bifurcation point, each parallel fiber is there-
ore a non-branching, one-dimensional, serial device. About
5% of the parallel fiber synapses innervate the Purkinje cells
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while the remaining 5% contact inhibitory interneurons [16].
As a first-order approximation, the function of a parallel fiber
is to synaptically activate hundreds of Purkinje cells in a serial
manner. As an action potential travels along a parallel fiber, the
selective activation of Purkinje cells as well as the timing of
their activation is determined by the number and the spacing of
these synapses (pfPc synapses) along the parallel fiber. Much of
the information required for Purkinje cell activation, therefore,
is contained in the distances between adjacent pfPc synapses.

A near one-to-one correlation exists between pfPc synapses,
which are visible at the magnification level of electron
microscopy, and the pfPc synaptic varicosities, which are visible
with the more convenient light microscopy. Many investiga-
tors have therefore drawn inferences about pfPc synapses from
observations on the pfPc synaptic varicosities [12,16,17,24]. In
particular, Palay and Palay [16] as well as Shepherd et al. [24]
have examined the linear distribution pattern of inter-varicosital
distances of pfPc synaptic varicosities. They have reported that
the probability of finding an inter-varicosital distance of l(i) is
inversely and exponentially proportional to l(i). This exponen-
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tial distribution pattern of axonal synaptic varicosities has been
observed in many other types of unmyelinated axonal systems
besides the cerebellar parallel fibers [4,23,24]. The functional
significance for this near universal exponential pattern is unclear,
although Shepherd et al. [24] have suggested that this expo-
nential distribution may hold clues about the mechanisms of
synaptogenesis and development as well as about certain neuro-
plasticity models invoking synaptic neogenesis. Moreover, the
relationship between the distribution pattern of pfPc synaptic
varicosities and information coding capacity of the pfPc synap-
tic network has not yet been examined. Here we propose to
derive the information coding capacity from the linear distribu-
tion pattern of pfPc synaptic varicosities along the parallel fibers
according to Shannon’s information theory formalism [2,21].
We also propose that the exponential-like distribution pattern of
axonal synaptic varicosities is an indication that the transmission
of information is being carried out in the most efficient manner.

2. Materials and methods

Eight mice (C57BL/6J, 3-month-old) were sacrificed and perfused intrac-
ardially with 4% formalin and 1% glutaraldehyde. The protocol was executed
according to the guidelines of the National Institutes of Health, and with the
approval of the University of Missouri Institutional Animal Care and Use Com-
mittee. The cerebella remained in the partially opened skull and post-fixed for
24–48 h before being removed. Each cerebellum was placed in 3% K2Cr2O7 and
1% OsO4 in DH2O for 1 day, then washed and impregnated with 1% AgNO3
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Fig. 1. A photomicrograph of a parallel fiber with synaptic varicosities. Paral-
lel fibers and their synaptic varicosities generally assume a beads-on-a-string
appearance. The placement of the synaptic varicosities (and thus the inter-
varicosital distances) appears to be random.

(∼15%). For constructing inter-varicosital distance histograms
in the present study, we have adopted a sample size of n = 500
just to be on the safe side. In addition, values of all standard
deviations in Fig. 2 are large—nearly equal to the values of the
mean. This is a mathematical property of the exponential distri-
bution pattern [25] and is probably related to the information-
coding role of these inter-varicosital distances (see text after
Eq. (2)).

3.2. Information coding capacity of parallel fiber synapses

When an action potential propagates along a parallel fiber,
pfPc synapses along the parallel fiber are activated sequentially,
delayed only by the time it takes for the action potential to
travel between adjacent synapses. Therefore, each parallel fiber
together with its synapses is analogous to a telegraphic code.
The code contains a series of symbols, the symbols themselves
being the distances between adjacent synapses. For messages
made of symbols, Shannon [21] has defined a quantity S, the
amount of information in bits coded by an average symbol, as

S = −κ
∑

Pl(i) ln Pl(i) (1)

F
d
a

or 1–2 days following the rapid Golgi procedure described in Scheibel and
cheibel [19]. Coronal sections (75 �m thick) were cut. This method has been
sed by Palay and Palay [16] as well as Hellwig et al. [4] in their studies on
xonal synaptic varicosities.

In optimally stained sections, the rapid Golgi method revealed only a small
raction of randomly selected parallel fibers darkly stained against a pale back-
round. Images of individual parallel fibers and their synaptic varicosities were
raced on a light microscope fitted with a camera lucida. Parallel fiber synaptic
aricosities were identified according to criteria of Palay and Palay [16] and
itchipornchai et al. [17]. We then measured inter-varicosital distances along

he parallel fibers and constructed frequency histograms. In the present study,
e have focused on parallel fibers in the cerebellar hemispheres.

. Results

.1. General morphological features of parallel fiber
aricosities

Parallel fibers and their synaptic varicosities generally
ssume a beads-on-a-string appearance (Fig. 1). There does
ot appear to be any obvious pattern of regularity in the place-
ent of these axonal varicosities. We have sought the optimal

ample size for the efficient acquisition of inter-varicosital dis-
ance data by plotting the mean and the standard deviation of
nter-varicosital distances as we collect more inter-varicosital
istances along parallel fibers within a small region of the cere-
ellar hemispheres in one mouse (Fig. 2). Other than the first
ata point (n = 10), both the mean inter-varicosital distance and
he standard deviation are not sensitive to the sample size. Little
dvantage could be gained by adopting a sample size beyond
00. This is consistent with West [26] who has also recom-
ended n = 100–200 as a sample size in stereology counting in

rder to reduce experimental error to within acceptable margins
ig. 2. The relationship between sample size and the mean as well as the standard
eviation of inter-varicosital distances. Both the mean inter-varicosital distance
nd the standard deviation are not sensitive to the sample size.
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Table 1
Mean and standard error of P(i) as a function of l(i)

l(i) (�m) Mean of P(i) Standard error of P(i) Stand error/mean

1–2.5 0.116 0.0124 0.108
2.5–4 0.414 0.0413 0.100

4–5.5 0.261 0.0429 0.164
5.5–7 0.137 0.0259 0.188

7–8.5 0.0458 0.0151 0.330
8.5–10 0.0199 0.00511 0.257
10–12.5 0.00598 0.00214 0.358

Values of the mean P(i) in column 2 are taken from Fig. 3A. P(i) decreases faster
than the standard error (column 3, derived from five histograms), hence causing
the standard error to “get worse” with increasing values of l(i).

where κ = 1/ln 2, Pl(i) is the probability of observing a particular
symbol or inter-varicosital distance l(i), and ln is the natural
logarithm.

From images of the type shown in Fig. 1, we can tabulate l(i)
and derive Pl(i) from a histogram of l(i) Fig. 3A, P(i) is Pl(i).
The histogram is constructed from a bin-to-bin average of five
individual histograms. To avoid cluttering Fig. 3, we have listed
the standard error of the mean height of each bin as well as
the ratio of the standard error and the mean in Table 1. First,
these standard errors reflect the variations in bin height of indi-
vidual histograms and are not to be identified with the standard
deviations in Fig. 2. The magnitudes of the standard errors are
∼15% for the first four bins which account for ∼93% of all of
the data on inter-varicosital distances (Table 1). Unlike the stan-
dard deviations in Fig. 2, the magnitude of the standard error
decreases in larger samples. Second, the [standard error/mean]
ratio increases predictably with l(i) as the sample size becomes
smaller for bins at larger values of l(i).

The data in Fig. 3A serves as the basis to compute S, the
average information coding capacity in bits per symbol (per
inter-varicosital distance or per pfPc synaptic varicosity since
the number of synaptic varicosities is the same as the number
of inter-varicosital distances for all practical purposes). We first
define a quantity s(i) as the coding capacity, or the amount of
information coded by a single symbol of inter-varicosital dis-
tance l(i) with a probability of P . Thus, s(i) is the amount of
i
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Fig. 3. (A) Histogram of inter-varicosital distance from parallel fibers in the
mouse cerebellar hemisphere. The histogram is constructed from a bin-to-bin
average of five individual histograms, each constructed from a total of 500
inter-varicosital distances. Y-axis is Pl(i), the probability of occurrence of inter-
varicosital distance l(i), X-axis is l(i). (B) Y-axis is s(i) in bits or [−κ ln Pl(i)]
where κ = 1/ln 2, X-axis is l(i); this shows that the amount of information coded
per synapse increases at longer inter-varicosital distances. (C) Y-axis is S(i) in
bits or [−κPl(i) ln Pl(i)], X-axis is l(i); this shows that, in a parallel fiber, most of
the information is coded by synapses with short inter-varicosital distances. (D)
Y-axis is Pl(i), the same data as in (A) but plotted in logarithmic scale, X-axis is
l(i); this shows that Pl(i) follows an exponential-like distribution pattern fitting
a straight line.
l(i)
nformation conveyed every time this symbol is used.

(i) = −κ ln Pl(i) (2)

he value of s(i) increases as l(i) increases (Fig. 3B). This is
ecause of the negative sign in Eq. (2), and also because Pl(i)
ecreases exponentially with l(i) (Fig. 3A). The coding capacity
f a symbol (e.g. inter-varicosital distance) is inversely related to
he predictability of the symbol—the more we can predict what
he next symbol is, the less uncertainty, the less information. A
ymbol or an inter-varicosital distance that occurs at a probabil-
ty of 1% conveys more information [−κ ln Pl(i) = 3.4 bits] than
symbol that occurs at a probability of 50% [−κ ln Pl(i) = 1 bit].

Pl(i) becomes smaller with larger values of l(i) (Fig. 3A).
herefore, most of the information transmitted by a parallel
ber is coded by synapses with shorter inter-varicosital dis-

ances. However, because [−κ ln Pl(i)] or s(i) increases sharply
ith l(i) (Fig. 3B), a small fraction of synapses with long inter-
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varicosital distances becomes responsible for coding more than
their fair share of the information. For example, 21% of the
pfPc inter-varicosital distances are longer than 5.5 �m (Fig. 3A).
These 21% of the inter-varicosital distances code about 35% of
the information (Fig. 3C). This leaves the remaining 65% of
the information coded by 79% of the pfPc synaptic varicosities
(those with inter-varicosital distances shorter than 5.5 �m).

We next define a quantity S(i) as

S(i) = Pl(i) × s(i) (3)

where S(i) denotes the contribution of symbol l(i) to the infor-
mation coded by an average symbol. Clearly, if a certain symbol
l(i) is used more often, that symbol will figure more promi-
nently in computing the coding capacity of an average symbol.
In Eq. (3), S(i) is therefore weighed by Pl(i), the probability of
symbol l(i). In Fig. 3C, S(i) is plotted as a function of l(i) as a
well-behaved converging series. This convergence is due to the
smaller weighing factors Pl(i) for larger values of l(i) (Fig. 3A).

The amount of information coded by a synaptic varicosity
averaged over all l(i) can now be calculated by summing all
values of S(i) from Eq. (3), or

S =
∑

S(i), or (4)

S = 2.15
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allel fiber. Since there are ∼103 varicosities per parallel fiber
[9], S is ∼2 × 103 bits per parallel fiber.

We can also define Scerebellum as the information coding
capacity for a given region or even the entire cerebellum. This
can be calculated from,

Scerebellum = S × N (6)

where N is the number of parallel fibers in that region or the
whole cerebellum. Since there are ∼1011 granule cells in the
human cerebellum [9], Scerebellum should be of the order of
2 × 1014 bits. Note that this is based on the bin width of six
to seven distinct classes of inter-varicosital distance, which,
as stated above, should be a low estimate. The estimate of
2 × 1014 bits is therefore also likely to be low. For the purpose
of comparison, an average English word carries just a little over
10 bits of information (11.7 to be exact [22]). The information
coding capacity of the cerebellar parallel fiber system is therefore
equivalent to the information coded by about 2 × 1013 English
words (e.g. 20 million books, each with about 1 million words).

3.3. The exponential distribution pattern

Although the placement of synaptic varicosities along paral-
lel fibers appears to be random (Fig. 1), the frequency histogram
of inter-varicosital distance is suggestive of an exponential tail
(
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The unit of S is bits of information per synaptic varicosity
or per inter-varicosital distance). Eqs. (1)–(4) can be used to
stimate the coding capacity of other axonal systems from the
istribution pattern of inter-varicosital distances.

The bin width in Fig. 3 is 1.5 �m. Had we chosen a bin width
alf as wide (0.75 �m), the calculated S would be larger since
xtra information is provided by splitting one symbol into two.
he value of S is therefore dependent upon the bin width of the

nter-varicosital distance histogram. The correct choice of the
in width, however, cannot be determined from Fig. 3 and must
e derived from insights into the biological significance of the
nter-varicosital distances. The key issue is the number of distinct
nd biologically significant classes of inter-varicosital distances.
he answer is unlikely to be one or two, as the coding capacity
ill be too small. In the case of one, the coding capacity is zero! It

s also unlikely to be three or four. This is because the distribution
attern of inter-varicosital distance is exponential (Fig. 3D). In
n exponential pattern with only three or four bins, most of the
nformation will be coded in the first one or two bins as the
umber of inter-varicosital distances in the other two to three
ins will be small. At a minimum, the axonal system must be
ble to distinguish five to six different classes of inter-varicosital
istances. In Fig. 3, most of the inter-varicosital distances are
ess than 10 �m. We therefore picked a bin width of 1.5 �m,
hich divides 10 �m into almost seven bins.
In addition, we can define S as the information coding capac-

ty for a parallel fiber. This can be calculated from,

= S × N (5)

here N is the number of synaptic varicosities (or more precisely,
he total number of inter-varicosital distances) in the entire par-
Fig. 3A). We have re-plotted the data in Fig. 3A in a semi-
ogarithmic graph. A straight line can be fitted through the data
oints (Fig. 3D), indicating an exponential distribution pattern
4,24].

. Discussion

.1. The relationship between pfPc synaptic varicosities
nd pfPc synapses

Palay and Palay [16] have characterized parallel fiber synap-
ic varicosities in the rat with light microscopy (LM) and electron

icroscopy (EM). They have shown that the density of varicosi-
ies along parallel fibers is statistically indistinguishable from the
ensity of synapses (although some varicosities have multiple
fPc synapses, some have none). Recent EM data have con-
rmed that the majority (∼90%) of the parallel fiber varicosities
ontain a single synapse [3,17,27]. Therefore, the correlation
etween parallel fiber synapses (must be studied with EM) and
ynaptic varicosities (can be studied with LM) is good. An inter-
sting issue is the use of the number of synapses as a structural
arker for the functional capacity of a neural network. The infor-
ation coding capacity of an axon, however, is a non-linear

unction of the number of synapses [Eqs. (1) and (2)]. Doubling
he number of synapses along an axon will increase but fall short
f doubling the coding capacity of the axon.

.2. Coding capacity in other axonal systems

We have estimated the coding capacity of axons from four
ther studies [3,4,12,16] (Table 2). Values of the coding capac-
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Table 2
Coding capacity of various unmyelinated axonal systems

Synaptic density (�m−1) Coding capacity S per synapse (bits) Coding capacity (bits/�m) Source

0.171 2.81 0.481 Rat parallel fibers at 3 month [4]
0.138 3.38 0.466 Rat parallel fibers at 9 month [4]
0.090 4.01 0.361 Rat parallel fibers at 23 month [4]
0.235 2.15 0.505 Mouse parallel fibers at 3 month
0.278–0.4 1.70 0.473–0.68 Rat parallel fibers [16]
0.222 2.70 0.599 Rat cortical axons [5]
0.0952 4.14 0.394 Rat corticostrial axons [12]

Values of synaptic density (column 1) are taken from the relevant references cited. Values for the coding capacity per synapse (column 2) are first calculated [using
Eqs. (1)–(4)] directly from the distribution histograms of inter-varicosital distances available from the references. A correction is then made such that all coding
capacities are based on an 1.5 �m bin width for the histograms of inter-varicosital distances. For example, if the cited reference uses a 1 �m bin width, then the
correction is done by adding results from Eqs. (1) to (4) to a factor of [ln(1/1.5)/ln(2)] = −0.585 bits [5,12]. If the cited reference uses a 4 �m bin width, then the
correction is done by adding results from Eqs. (1) to (4) to a factor of [ln(4/1.5)/ln(2)] = 1.42 bits. Values for the coding capacity per �m of axon (column 3) are
calculated as a product of columns 1 and 2.

ity per synapse are between 1.7 and 4.1 bits. In rat parallel
fibers, age-related changes can be significant between 3 and 23
months. As the number of synapses decreases and the mean inter-
varicosital distance increases, the coding capacity per synapse
actually increases. As a result, the coding capacity per micron
of parallel fiber exhibits little or no changes between 3 and 23
months in the rat cerebellum. But, if there is a significant short-
ening of parallel fibers with age, then the coding capacity per
parallel fiber will decrease. This happens to be the case as the
mean length of the parallel fiber at 23 months is approximately
one-third of the value at 3 months [5].

4.3. Coding capacity and information processing

The information coding capacity S is a structural parameter
determined by the spatial distribution pattern of the pfPc synap-
tic varicosities. For example, consider the anterior lobe which
receives its primary afferents from muscle spindles in the weight-
bearing lower extremities. From Eqs. (1) to (6), we can calculate
the coding capacity, Santerior lobe (Sant). In this way, Sant has not
been calculated based on the amount of information conveyed
by the muscle spindles, which we can call Sspinocerebellar tract
(Ssct) [6,20]. Rather, Sant concerns a capacity for directing the
selective activation of Purkinje cells upon receiving the afferent
input information, Ssct. A superior pfPc synaptic system in the
anterior lobe (with a large S ) coupled with a superior propri-
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play a modulating role in reference to the excitatory actions
provided by the ascending axons of the granule cells to Purkinje
cells. There may be significant and dynamic changes in the func-
tion of individual pfPc synapses [8,10,11,14] as a function of
experience or aging. The relationship between this modulatory
function, neuroplasticity, and information processing is, how-
ever, unclear at the present time [1]. These findings can compli-
cate the computation of coding capacity. They, however, should
not fundamentally invalidate the concept of coding capacity in
cerebellar parallel fibers. In particular, the coding capacity, like
Sant, can be defined as an anatomic measure, whereas the actual
information, like Ssct, must be derived from physiology [6,20].

4.4. Exponential distribution, efficient coding, and entropy

Sending a coded message (e.g. a telegraph) is constrained
both by the number of available symbols (e.g. N as the 26 letters
in the English alphabet) and the total message length (e.g. L as the
total number of letters in a telegraph). The boundary conditions
are:

N =
∑

n(i) (7)

L =
∑

n(i)l(i) (8)

where n(i) is the number of symbols of the length l(i). The task
o
t
t
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t
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ant
ceptive afferent system (with a large Ssct) will clearly produce
xcellent anti-gravity defenses. When Sant � Ssct, insufficient
oding capacity leaves much of the afferent information from
he muscle spindles wasted. When Sant � Ssct, over-design of
he pfPc synaptic circuitry may have its own shortcomings.
ltimately, Sant together with Ssct, determines how the cere-
ellum responds to the muscle spindle input. Mechanisms must
xist to ensure that Sant and Ssct are suitably and continuously
atched. Such matching may involve the cerebellar neuroplas-

icity mechanisms proposed by Marr [14] and recently reviewed
y Ito [10,11].

Interestingly, Isope and Barbour [8] have recently reported
hat a significant portion of the parallel fiber synapses were
ilent. More recently, Mittmann et al. [15] as well as Marcaggi
nd Attwell [13] have suggested that the parallel fibers may also
f searching for the most efficient coding recipe can be reduced
o searching mathematically for the best way of partitioning
he total message length L into N segments such that the aver-
ge message contains the most information while observing the
oundary conditions [Eqs. (7) and (8)]. Brillouin [2] has shown
athematically that the most efficient coding is attained when

he probability of l(i) [or Pl(i)] assumes an exponential rela-
ionship with l(i). Interestingly, this is also seen in experimental
ata from the inter-varicosital distances in parallel fibers [16,24],
xons of cortical pyramidal cells [4], and unmyelinated axons
f the hippocampus and others [23,24]. Therefore, optimization
f information transmission may already be wide-spread.

Elsewhere in nature, exponential-like distribution pattern also
xists (e.g. the decay of radioactive particles). Partitioning a
essage of length L into N segments is analogous to partitioning
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total energy E among N ideal gas molecules in thermodynamics,
where the boundary conditions are,

N =
∑

n(i) (9)

E =
∑

n(i)e(i) (10)

These boundary conditions are similar in form to Eqs. (7)
and (8). In thermodynamics, the resultant Boltzmann distribu-
tion (exponential) leads to a maximization of entropy. In coding
information, an exponential distribution leads to a maximization
of information. Indeed, information can be measured in entropy
units and vice versa [2]. We have reported the similarities in the
formalism of information theory and thermodynamics including
the link between information and entropy [7,18]. Perhaps biolog-
ical information processing in axonal systems can be understood
with synapses as basic structural elements on the one hand and
coding capacity or entropy as a measure of function on the other.
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